EXERCISE SCIENCE

Program Overview
This program prepares students to assess, design, and implement individual and group exercise and fitness programs for both healthy individuals and those with controlled disease. In addition to knowledge and skills associated with physiology, exercise science professionals also must be knowledgeable and skilled in evaluating health behaviors and behavior modification and motivation techniques necessary to promote and maintain positive lifestyle behaviors. Students completing this program will have the knowledge, skills, and abilities necessary for entry-level EXS employment in the public and private industries and/or graduate study in related areas.

Students may be eligible for a number of nationally recognized certifications in the field (e.g., http://www.acsm.org/get-stay-certified/get-certified) and may pursue employment in various healthcare and/or public health settings in and around exercise and healthy lifestyle interventions. Students will be also able to use their degree as a platform for a wide range of graduate degree programming including, but not limited to, physical therapy, exercise physiology, physician's assistant, occupational therapy, nutrition, strength and conditioning, and public health, to name a few.

Curriculum Overview
The curriculum is designed to allow flexibility to customize the program by selecting courses in both foundational and core content areas based on the individual’s personal and professional goals. Four career paths are identified, each with a selected set of courses which best meets that program:

- Exercise science professional
- Pre-physical therapy
- Pre-athletic training
- Pre-physician assistant

Students should consult with their faculty advisor regarding the requirements for each career path option.

Degree Offered:
- B.S. in Exercise Science

Contact
Drue Stapleton, Ph.D.
Assistant Professor
Science Hall 339F
609-895-5426
dstapleton@rider.edu

Program Website: Exercise Science (https://www.rider.edu/academics/colleges-schools/college-liberal-arts-education-sciences/science-programs/exercise-science)

Associated Department: Department of Biology, Behavioral Neuroscience and Health Sciences (https://www.rider.edu/academics/colleges-schools/college-liberal-arts-education-sciences/science-programs/biology-behavioral-neuroscience-health-sciences)

Related programs:
- Behavioral Neuroscience (http://catalog.rider.edu/undergraduate/colleges-schools/liberal-arts-sciences/majors-minors-certificates/behavioral-neuroscience)
- Biology (http://catalog.rider.edu/undergraduate/colleges-schools/liberal-arts-sciences/majors-minors-certificates/biology)
- Chemistry (http://catalog.rider.edu/undergraduate/colleges-schools/liberal-arts-sciences/majors-minors-certificates/chemistry)
- Health Sciences (http://catalog.rider.edu/undergraduate/colleges-schools/liberal-arts-sciences/majors-minors-certificates/healthsciencesbs)
- Physics (http://catalog.rider.edu/undergraduate/colleges-schools/liberal-arts-sciences/majors-minors-certificates/physics)

Exercise Sciences Program Requirements
(61 - 72 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 115</td>
<td>Principles of Biology I and Principles of Biology I Lab (Core Requirements)</td>
<td>4</td>
</tr>
<tr>
<td>BIO 116</td>
<td>Principles of Biology II and Principles of Biology II Lab</td>
<td>4</td>
</tr>
<tr>
<td>BIO 221</td>
<td>Human Anatomy & Physiology I and Human Anatomy & Physiology I Lab</td>
<td>4</td>
</tr>
<tr>
<td>BIO 222</td>
<td>Human Anatomy & Physiology II and Human Anatomy & Phys II Lab</td>
<td>4</td>
</tr>
<tr>
<td>EXS 121</td>
<td>Exercise Injury Control and Management</td>
<td>3</td>
</tr>
<tr>
<td>HSC 100</td>
<td>Intro to Human Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>HSC 105</td>
<td>Introduction to Health Professions</td>
<td>1</td>
</tr>
<tr>
<td>MTH 105</td>
<td>Algebra and Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>PSY 100</td>
<td>Intro To Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemistry Requirements 7-8
Select two courses from the list below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 225</td>
<td>Introduction to Organic and Biochemistry and Intro to Organic & Biochm Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHE 110</td>
<td>Survey of General Chemistry and Survey of Gen Chemistry Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHE 120</td>
<td>Principles of Chemistry and Principles of Chemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>CHE 122</td>
<td>Intro to Chemical Systems and Quantitative Methods Lab</td>
<td>3</td>
</tr>
<tr>
<td>HSC 201</td>
<td>Nutrition for Exercise and Physical Activity</td>
<td>3</td>
</tr>
<tr>
<td>PHY 100</td>
<td>Principles of Physics I and Principles of Physics I Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHY 101</td>
<td>Principles of Physics II and Principles of Physics II Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHY 200</td>
<td>General Physics I and General Physics I Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHY 201</td>
<td>General Physics II and General Physics II Lab</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Requirements 14-22
Select at least six courses from the list below depending upon your intended career path. 1
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP 120</td>
<td>Expository Writing</td>
<td>3</td>
</tr>
<tr>
<td>BIO 115 & 115L</td>
<td>Principles of Biology I and Principles of Biology I Lab</td>
<td>4</td>
</tr>
<tr>
<td>MTH 105</td>
<td>Algebra and Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>PSY 100</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>NCT 010</td>
<td>Freshman Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 116 & 116L</td>
<td>Principles of Biology II and Principles of Biology II Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHE 120 & CHE 121</td>
<td>Principles of Chemistry and Principles of Chemistry Lab</td>
<td>4</td>
</tr>
<tr>
<td>CMP 125</td>
<td>Research Writing</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>61-72</td>
</tr>
</tbody>
</table>

1. When lab courses are selected, both lab and lecture sections must be taken concurrently.
2. Additional capstone credits may be taken depending upon the requirements for your intended career path.

Academic Plan of Study

The following educational plan is provided as a sample only. Rider students who do not declare a major during their freshman year, who change their major, or those who transfer to Rider may follow a different plan to ensure a timely graduation. Each student, with guidance from his or her academic advisor, will develop a personalized educational plan.

Statistics Core Courses
Select one of the following:
- BNS 250 Biostatistics
- ENV 200 Statistical and Computer Applications in the Natural Sciences
- MTH 120 Intro to Applied Statistics
- PHY 105 Matter, Forces, Energy, Exploration
- PSY 201 Statistics and Research Design

Behavioral Psychology Core
Select one of the following:
- PSY 283 Sport Psychology
- PSY 345 Health Psychology

Capstone Course
Students will select either an Independent Study or an Internship to be approved by LASCAP for a minimum of 3 credits.

Year 2

Fall Semester
- EXS 121 Exercise Injury Control and Management
- HSC 105 Introduction to Health Professions
- Semester Credit Hours: 15

Spring Semester
- BIO 221 Human Anatomy & Physiology I
- & BIO 222L Human Anatomy & Phys II Lab
- HIS 150 World History to 1500
- HSC 201 Nutrition for Exercise and Physical Activity
- PSY 283 Sport Psychology
- or PSY 345 Health Psychology
- Foreign Language
- Semester Credit Hours: 16

Year 3

Fall Semester
- Statistics Course
- EXS 320 & EXS 321 Exercise Physiology and Exercise Physiology Laboratory
- HSC 201 Nutrition for Exercise and Physical Activity
- Social Perspectives II
- Semester Credit Hours: 13-14

Spring Semester
- EXS 340 & EXS 341 Exercise Testing & Prescription and Exercise Testing & Prescription - Lab
- EXS 360 Foundations of Strength and Conditioning
- Aesthetic Perspectives General Education Credits
- Philosophical Perspectives General Education Credits
- Elective Credits
- Semester Credit Hours: 17

Year 4

Fall Semester
- Independent Study or Internship in EXS
- Research Design Option
- EXS 405 Special Populations & Considerations
- Aesthetic Perspectives General Education Credits
- Elective Credits
- Semester Credit Hours: 15

Spring Semester
- Capstone Seminar or Certification Exam Prep (ACSM, CEP, NSCA, CSCS)
- EXS 401 Organization and Administration in Exercise Science
- Global Perspectives General Education Credits
- Semester Credit Hours: 17
Courses and Descriptions

BCH 225 Introduction to Organic and Biochemistry 4 Credits
An introductory course describing the basic principles of organic chemistry and biochemistry as they relate to human metabolism and disease. The nature of the chemical structure and reactivity of organic functional groups such as alcohols, aldehydes, ketones, carboxylic acids and amines will be presented with biological processes in mind. The biochemistry of the macromolecules DNA, RNA, proteins, carbohydrates and lipids will be discussed leading in to a discussion of some of the more important metabolic pathways. This course is intended for science majors who do not take the full two semester sequence of organic chemistry and two semesters of biochemistry and desire a background in biochemistry. Non-science major students who have had one semester of general chemistry and one semester of biology may also enroll in the course. Three hours of lecture and one three-hour lab per week. Prerequisite(s): CHE 120, CHE 121; BIO 115 or BIO 117.
Corequisite(s): BCH 225L.

BCH 225L Introduction to Organic & Biochemistry Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): BCH 225.

BIO 115 Principles of Biology I 4 Credits
An introductory biology course focusing on major themes of biology: what is life?; Cells as fundamental structure and functional unit of life; information transmission, storage and retrieval; Diversity and unity of life explained by evolution. Three hours of lecture and one three-hour lab per week.
Corequisite(s): BIO 115L.

BIO 115L Principles of Biology I Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): BIO 115.

BIO 116 Principles of Biology II 4 Credits
An introductory biology course focusing on major themes of biology: Energy and matter to carry out life’s essential functions; Interdependent relationships characterize biological systems (homeostasis, growth & development); Behavior of living things; Ecology and the environment. Three hours of lecture and one three-hour lab per week.
Corequisite(s): BIO 116L.

BIO 116L Principles of Biology II Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): BIO 116.

BIO 221 Human Anatomy & Physiology I 4 Credits
A comprehensive survey of the structure and function of musculo-skeletal systems, neuroendocrine systems and related tissues and cellular interactions. Physiological applications include homeostasis, muscle dynamics, and cell activities. Laboratory exercises complement lecture material through the use of animal dissections, wet labs, computer-assisted investigations, microscopy, and models. Exams, case histories, personal investigations, and lab practicums assess learning. Course emphasis supports allied health and pre-professional training. Three hours of lecture and one three-hour lab per week. Designed for allied health students; does not satisfy requirements for the biology major. Prerequisite(s): HSC major ONLY or Permission of instructor.
Corequisite(s): BIO 221L.

BIO 221L Human Anatomy & Physiology I Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): BIO 221.

BIO 222 Human Anatomy & Physiology II 4 Credits
A comprehensive survey of the organ systems of the body including special senses, cardiovascular, respiratory, digestive, excretory, reproduction and development. Physiological components include electrolytes, metabolism, nutrition, and the mechanisms of homeostasis and cell reception. Lab studies support lecture material through dissections, wet labs, computer-assisted learning, microscopy, and models. Assessment includes lab practicums, exams, and reports. Course emphasis supports allied health and pre-professional training. Designed for allied health students; does not satisfy requirements for the biology major. Prerequisite(s): BIO 221.
Corequisite(s): BIO 222L.

BIO 222L Human Anatomy & Phys II Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course. Prerequisite(s): BIO 222L.
Corequisite(s): BIO 222.

BNS 250 Biostatistics 4 Credits
This course will assist students with acquiring the skills necessary to design, conduct, and interpret research studies. Emphasis will be on learning how to develop experimental designs to translate theoretical concepts into testable hypotheses. Experiments conducted during laboratory sessions will use laboratory mice and will use equipment for measuring animal behavior. Students will gain experience collecting, analyzing, writing and orally presenting their research results. Three hours of lecture and one three-hour lab per week. Prerequisite(s): MTH 105 or higher or placement into MTH 210, grade of “C” or better in one lab science course.
Corequisite(s): BNS 250L.

BNS 250L Biostatistics Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course. Corequisite(s): BNS 250.
CHE 110 Survey of General Chemistry 4 Credits
A one-semester survey of basic general chemical principles designed to be applied to questions in health-related fields. Students will explore the fundamental structures of atoms and simple compounds that comprise living beings; basic patterns in chemical reactivity, especially oxidation-reduction and acid-base reactions; quantitative analyses of biologically-relevant compounds and chemical reactions; properties of substances; and kinetic and thermodynamic principles underlying such chemicals and chemical processes. In the laboratory portion of this course, students will learn and apply principles of experimental safety and will apply knowledge gained in the class via application in basic experimental contexts. No prerequisites. Students who have completed CHE 120 and/or CHE 122 will not be permitted to enroll in CHE110/110L. Furthermore CHE 110 will not serve as a prerequisite for CHE 122.

CHE 110L Survey of Gen Chemistry Lab 0 Credits
In the laboratory portion of this course, students will learn and apply principles of experimental safety and will apply knowledge gained in the class via application in basic experimental contexts.

CHE 120 Principles of Chemistry 3 Credits
For students who have successfully completed one year of high school chemistry. This systematic study of the fundamental principles and concepts of chemistry covers atomic structure, bonding, stoichiometric relationships, including solution and oxidation-reduction reactions, and molecular structure. Three hours of lecture per week. Prerequisite(s): High school chemistry or CHE 100 is recommended before taking this course.
Corequisite(s): CHE 121.

CHE 121 Principles of Chemistry Lab 1 Credits
For students concurrently taking CHE 120. Experiments involve gravimetric, volumetric, and spectrophotometric quantitative analysis. One three-hour lab per week. Fall.

CHE 122 Intro to Chemical Systems 3 Credits
A continuation of CHE 120. For students majoring in the sciences but may be taken by others. Chemical systems in which the study of kinetics, thermodynamics, equilibrium, and radiochemistry are emphasized. Three hours of lecture per week. Prerequisite(s): CHE 120, MTH 105 or higher.
Corequisite(s): CHE 123.

CHE 123 Quantitative Methods Lab 1 Credits
Usually taken concurrently with CHE 122. Primarily for students majoring in the sciences. A number of quantitative classical and instrumental methods of analysis are used to determine thermodynamic properties and reaction mechanisms. One three-hour lab per week. Prerequisite(s): CHE 121.
Corequisite(s): CHE 122.

ENV 200 Statistical and Computer Applications in the Natural Sciences 4 Credits
This course introduces important statistical concepts, their application, and the usage of computer technology relevant to biological, environmental, geological, and marine problems. Students will learn various graphical and statistical techniques and how to execute them on personal computers. The curriculum emphasizes the integrated nature of these techniques and their importance to meaningful data evaluation and representation. Laboratory exercises are designed to emphasize useful solutions to problems found in many scientific disciplines using computer-based methodologies. Three hours of lecture and one three-hour lab per week.
Corequisite(s): ENV 200L.

ENV 200L Statistical and Computer Applications in the Natural Sciences Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): ENV 200.

EXS 121 Exercise Injury Control and Management 3 Credits
This course is designed to provide the participant with entry level knowledge, competence, and skill in the care and prevention of injuries sustained during physical activity, sport, and exercise. This course includes units dealing with basic anatomy of common injuries, evaluation techniques, preventive measures to reduce the incidences of injuries and a knowledge of basic treatment procedures to be used after injuries occur. Legal and ethical issues will also be discussed.

EXS 320 Exercise Physiology 3 Credits
An entry level exploration of the physiological processes, metabolic requirements, and consequences of exercise in humans. Emphasis is placed on bioenergetics, as well as circulatory, respiratory, and neuromuscular responses to the physical stress of exercise performed for health and disease prevention.
Prerequisite(s): BIO 221, BIO 222.

EXS 321 Exercise Physiology Laboratory 1 Credits
EXS 321 is the laboratory course that accompanies EXS 320. Topics will include entry-level practical skills and competencies related to exercise capacity evaluation, interpretation of exercise data, and application of exercise interventions in a clinical setting. Prerequisite(s): BIO 221, 222 Co-requisite(s): EXS 320.

EXS 340 Exercise Testing & Prescription 3 Credits
An advanced, competency based course in the evidence based evaluation and prescription of exercise interventions in healthy and clinical populations. Prerequisite(s): EXS 320 Co-requisite(s): EXS 341.

EXS 341 Exercise Testing & Prescription - Lab 1 Credits
An advance, competency based laboratory course in the evidence based evaluation and prescription of exercise interventions in healthy and clinical populations Prerequisite(s): EXS 320 Co-requisite(s): EXS 340.

EXS 360 Foundations of Strength and Conditioning 4 Credits
This course examines the advanced methods and techniques associated with the design of strength and conditioning programs to enhance human performance in sport and fitness. This course is designed to develop, enhance, and apply knowledge and skills to prepare the student for the profession of strength and conditioning.
Prerequisite(s): EXS 320, EXS 321, HSC 302.

EXS 401 Organization and Administration in Exercise Science 3 Credits
This course examines the various issues, policies, and procedures involved with administrative aspects of exercise science in traditional and non-traditional settings. Emphasis is on administrative concepts, facility design, budgeting and equipment purchasing, personnel management, record keeping, and legal liability.
Prerequisite(s): EXS 360.

EXS 405 Special Populations & Considerations 3 Credits
This course is an advanced course in exercise programming for a variety of unique populations. Pathophysiology and considerations relative to diseases of the musculoskeletal, neuromuscular, and immunologic systems will be discussed. Recommended modifications and evidence based techniques that support fitness programming for individuals with specific exercise needs will be explored.
Prerequisite(s): EXS 320.
HSC 100 Intro to Human Nutrition 3 Credits
This course is designed to offer the student understanding of fundamental human nutrition concepts including, but not limited to, digestion, absorption, metabolism, functions and sources of macronutrients and micronutrients. The theme of the course will align with human health and disease states and the important considerations about the food industry and its relation to healthy dietetic choices.

HSC 105 Introduction to Health Professions 1 Credits
Course Description: This course will provide a basic overview of the health science professions including but not limited to: athletic training, clinical exercise physiology & cardiac rehabilitation, chiropractic, physician assistant, occupational therapy, nursing, community health education specialist, and physical therapy. The course will also cover the professional activities (i.e. professional organizations, certifications, professional issues, and professional liabilities) that are related to these professional applications.

HSC 200 Environmental Health & Human Health 3 Credits
The health of any individual is a function of both our genetics and environmental factors. Environmental factors most broadly defined include the air we breathe, the water we drink and the food we eat. This course will focus on numerous examples of how bacteria, viruses, and exposure to environmental chemicals result in human diseases. Examples range from failures in public health infrastructure (cholera, diphtheria, river blindness, etc) and chemical exposures (birth defects, cancer, etc). There is also much known about how diet and nutrition can prevent diseases.
Prerequisite(s): BIO 10X Life Science course or any biology laboratory course (BIO 115, 116 or 117).

HSC 201 Nutrition for Exercise and Physical Activity 3 Credits
An introductory exploration of evidence based nutritional theory and applications in sport and exercise.

HSC 302 Kinesiology 4 Credits
The purpose of this course is to explore human movement during performance of activities. This course will explore the relationship between anatomical structures and function in the production of movement. The application and relationships between the fundamental principles of mechanics and musculoskeletal system function will be addressed within the framework of clinical and research perspectives. Both qualitative and quantitative approaches will be applied towards a better understanding of human movement, the analysis of physical activity. Prerequisite(s): BIO 221 & MTH 105 (or equivalent) or POI.
Corequisite: HSC 302L.

HSC 302L Kinesiology Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): HSC 302.

MTH 105 Algebra and Trigonometry 4 Credits
The course is an in depth and rigorous study of functions and graphs, equations and inequalities, polynomial and rational functions, exponential, and logarithmic functions, basic trigonometric functions and their inverses, trigonometric identities.
Prerequisite(s): A mathematics SAT score of 570, departmental placement or MTH 100.

MTH 120 Introduction to Applied Statistics 3 Credits
Collection and presentation of data. Measures of location and variation, sampling theory, hypothesis testing, confidence intervals, t-tests, chi-square tests, regression, and correlation. Emphasizes practical applications. Not open to business administration, chemistry, environmental, geosciences, marine sciences, math or liberal studies majors.
Prerequisite(s): MTH 102 or MTH 105.

PHY 101 Principles of Physics II 3 Credits
Continuation of Physics 100. Electrostatics, electricity, and magnetism; DC and AC circuits, physical and geometrical optics, introduction to elementary particle and quantum physics. Three hours of lecture per week. Prerequisite(s): PHY 100.
Corequisite(s): PHY 101L.

PHY 101L Principles of Physics II Lab 1 Credits
For students concurrently taking Physics 101. One three-hour lab per week.
Corequisite(s): PHY 101.

PHY 201 General Physics II 4 Credits
A continuation of the concepts developed in Physics 200. Electricity, electrical circuits, magnetism, Maxwell's equations. Light and optics, including lenses, interference, and diffraction. Three hours of lecture and one three-hour lab per week. Prerequisite(s): PHY 200, MTH 211 or concurrent enrollment.
Corequisite(s): PHY 201L.

PHY 201L General Physics II Lab 0 Credits
This lab is a co-requisite and must be taken with the corresponding course.
Corequisite(s): PHY 201.

PSY 100 Introduction to Psychology 3 Credits
An orientation to psychology, covering major facts, principles and concepts about human and animal behavior and experience, research findings, major problems, basic vocabulary, methodologies, and contributions in the field. Topics include psychology as a science; human development; individual differences; intelligence and its measurement; special aptitudes and interests; personality and social behavior; motivation and emotion; frustration and personality deviations; and learning, thinking, remembering and forgetting.

PSY 105 Introduction to Research in Psychology 3 Credits
Students will be introduced to the basic research methods used in psychology including, surveys, experiments and observation. Students will collect data and learn to describe this data using basic tools of analysis including graphic display and statistical analysis. Students will read original psychological research and learn to write using the conventions of the American Psychological Association.
Prerequisite(s): a grade of “C” in PSY 100.

PSY 201 Statistics and Research Design 3 Credits
Introduces students to statistics and research methods in the behavioral sciences. Covers the fundamentals of descriptive and inferential statistics, a variety of issues in research design, selected research designs including the case study, correlational and experimental designs. In addition, students will explore the literature in psychology in order to examine the use of statistics and research design in real research problems.
Prerequisite(s): grade of “C” in PSY 105.
PSY 283 Sport Psychology 3 Credits
This survey course will focus on the social and psychological factors related to performance and participation in sport and exercise, health, and injury rehabilitation settings. Two general questions will be explored: (a) how do social and psychological variables influence performance and participation in physical activity pursuits? And (b) how does physical activity participation affect the psychological well-being of the individual? To better understand these questions, this course will overview theoretical and methodological approaches to a variety of sport and exercise psychology topics, including: socialization, motivation, group processes, competition, and performance enhancement. This course counts towards the fulfillment of the Disciplinary Perspectives element of the CLAS general education curriculum.
Prerequisite(s): PSY 100.

PSY 345 Health Psychology 3 Credits
This course focuses on the biopsychosocial model of health in which biological, psychological and social factors contribute to health and wellbeing, as well as illness and disease. After a brief introduction to systems of the body, i.e. nervous, endocrine, respiratory, cardiovascular, digestive, immune, this course will examine health enhancing behaviors such as exercise and nutrition, as well as health compromising behaviors such as drug abuse and other reckless behaviors, along with models that explain behavior maintenance and change. Additionally, attention is devoted to a discussion of how health psychology can function in shaping health care policy.
Prerequisite(s): PSY 100.